CS 4700: Foundations of Artificial Intelligence

Prof. Bart Selman
selman@cs.cornell.edu

Machine Learning:
 Neural Networks
 R\&N 18.7

Intro \& perceptron learning

Rich history, starting in the early forties.
(McCulloch and Pitts 1943)
(including at least on suspicious death ...)
Two views:

- Modeling the brain.
- "Just" representation of complex functions.
(Continuous; contrast decision trees.)
Much progress on both fronts.
Drawn interests from:
Neuro-science, Cognitive science, AI,
Physics, Statistics, and CS / EE.

Neurons / nerve cells

cell body or soma
branches: dendrited
single long fiber: axom
(100 or more times the diameter of cell body) axon connects via synapsis to dendrites of other c signals propagated via complicated electrochemical reaction
each cell has a certain electrical potential
when above threshold, pulse is sent
down axon

Neuron: How the brain works

\# neurons ~ 100 Billion

synapses can increase (excitatory) / decrease (inhibitory) potential (signal)
but most importantly: have plasticity - can
learn / remember!
In fact, learning can happen to single cell! Note: current model gives neuron with little stucture. Complexity arises out of connectivity. Not clear this is "final" model.

Idea: collection of simple cells leads to complex
behavior: thought, action, and consciousness
Challenged by e.g. Penrose.
Contrast with current computer design.

Massively Parallel

Neurons: highly parallel computation.
10 to 100 steps - given simple timing
constraints, one can deduce that certain visual
and other cognitive computations are carried out
in about 10 to 100 layers of neurons.
Interesting experiments about how visual features we can detect in parallel.

Appears to need massive parallelism.
\# neurons ~ 100 Billion
Why not build a model like a network of neurons?

	Computer	Human Brain
Computational units	$1 \mathrm{CPU}, 10^{5}$ gates	10^{11} neurons
Storage units	$10^{9} \mathrm{bits}$ RAM, 10^{10} bits disk	10^{11} neurons, 10^{14} synapses
Cycle time	$10^{-8} \mathrm{sec}$	$10^{-3} \mathrm{sec}$
Bandwidth	$10^{9} \mathrm{bits} / \mathrm{sec}$	$10^{14} \mathrm{bits} / \mathrm{sec}$
Neuron updates/sec	10^{5}	10^{14}

Tempting enterprise:
Design computer modeled after the brain.
Good company: Von Neumann (1958)
The Computer and the Brain
But the connection machine was not successful (Hillis 1989 / Thinking Machines) 64 K processors.
What was the problem?

R\&N:
The exact way in which the brain enables thought is one of the great mysteries of science.

Much recent progress
Still, there are skeptics. Especially in CS.

The Skeptic's Position

Related to "levels of abstractions" common in CS. (less so in EE / Cogn. Sci.)

Consider: Try to figure out how a computer program performing a heap sort works.
Q. How far would you get with a voltmeter? Wiring diagram? Possibly the wrong level of abstraction!

Could be similar problem in understanding higher cognition using FMRI scans!
Still, let's see what neural net research has achieved.

New York Times: "Scientists See Promise in Deep-Learning
Programs," Saturday, Nov. 24, front page.
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?hpw

Multi-layer neural networks, a resurgence!
a) Winner one of the most recent learning competitions
b) Automatic (unsupervised) learning of "cat" and "human face" from 10 million of Google images; $\mathbf{1 6 , 0 0 0}$ cores 3 days; multilayer neural network (Stanford \& Google). ImageNet http://image-net.org/
c) Speech recognition and real-time translation (Microsoft Research, China).
Aside: see web site for great survey article
"A Few Useful Things to Know About
Machine Learning" by Domingos, CACM, 2012.

Start at min. 3:00. Deep Neural Nets in speech recognition. ${ }_{10}$

Artificial Neural Networks
 Mathematical abstraction!

Basic Concepts

A Neural Network maps a set of inputs to a set of outputs

Number of inputs/outputs is variable
The Network itself is composed of an arbitrary number of nodes or units, connected by links, with an arbitrary topology.
A link from unit i to unit j serves to propagate the activation a_{i} to j , and it has a weight W_{ij}.

What can a neural networks do?
Compute a known function / Approximate an unknown function
Pattern Recognition / Signal Processing
Learn to do any of the above

Different types of nodes

Input edges, each with weights (positive, negative, and change over time, learning)

Artificial Neuron,

$a_{0}=-1 \quad$| Bias Weight |
| :---: |
| $W_{0, i}$ | | Node or unit, |
| :---: |
| Processing Unit i |

function(in_{i}):
weighted sum of its inputs, including
 fixed input a_{0}. input function

$$
i n_{i}=\sum_{j=0}^{n} W_{j, i} a_{j} \quad \text { (typically } \quad \text { non-linear) }
$$

\rightarrow a processing element producing an output based on a function of its inputs
Note: the fixed input and bias weight are conventional; some authors instead, e.g., or $\mathrm{a}_{0}=1$ and $-\mathrm{W}_{0 i}$

lot of the rectifier (blue) and
oftplus (green) functions near $x=0$

(a)

ReLU
Activation Functions
Rectifier Linear Unit
(deep learning)

(a) Threshold activation function \rightarrow a step function or threshold function (outputs 1 when the input is positive; 0 otherwise).
(b) Sigmoid (or logistics function) activation function (key advantage: differentiable) $1 /\left(1+e^{-x}\right)$
(c) Sign function, +1 if input is positive, otherwise -1 .

These functions have a threshold (either hard or soft) at zero.
\rightarrow Changing the bias weight $\mathrm{W}_{0, \mathrm{i}}$ moves the threshold location.

$$
f(x)=\frac{1}{1+e^{-x}}
$$

The derivative of $f(x)$ is:

$$
f^{\prime}(x)=f(x) \times(1-f(x))
$$

$$
\frac{d s(x)}{d x}=\frac{1}{1+e^{-x}}
$$

$$
=\left(\frac{1}{1+e^{-x}}\right)^{2} \frac{d}{d x}\left(1+e^{-x}\right)
$$

$$
=\left(\frac{1}{1+e^{-x}}\right)^{2} e^{-x}(-1)
$$

$$
=\left(\frac{1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)\left(-e^{-x}\right)
$$

$$
=\left(\frac{1}{1+e^{-x}}\right)\left(\frac{-e^{-x}}{1+e^{-x}}\right)
$$

$$
=s(x)(1-s(x))
$$

Figure of sigmoid and derivative.
Note: largest derivative at $x=0$
That's where neuron is most sensitive to weight changes (effect of changes is well "controlled").

Threshold Activation Function

$$
\begin{aligned}
& \operatorname{in}_{i}=\sum_{j=0}^{n} W_{j, i} a_{j}>0 ; \Leftrightarrow \operatorname{in}_{i}=\sum_{j=1}^{n} w_{j, i} a_{j}+w_{0, i} a_{0}>0 \\
& \quad \text { defining } a_{0}=-1 \text { we get } \sum_{j=1}^{n} W_{j, i} a_{j}>w_{0, i}, \theta_{i}=w_{0, i} \\
& \quad \text { defining } a_{0}=1 \text { we get } \sum_{j=1}^{n} W_{j, i} a_{j}>-w_{0, i}, \theta_{i}=-w_{0, i}
\end{aligned}
$$

Input edges, each with weights (positive, negative, and change over time, learning)
θ_{i} threshold value associated with unit i

(a)
$\theta_{\mathrm{i}}=0$

$\theta_{i}=t \quad \begin{gathered}\text { Carla P. Gomes } \\ \text { CS4700 }\end{gathered}$

Implementing Boolean Functions

Units with a threshold activation function can act as logic gates; we can use these units to compute Boolean function of its inputs.

> Activation of
> threshold units when:
> $\sum_{j=1}^{n} W_{j, i} a_{j}>W_{0, i}$

Historical context: Modeling neurons in our brain as logical gates was a key event in viewing "thinking as computation." The rest is history... ();

CURRICULUM
by category by author by title

RESEARCH intro to our robots
protothinker complete/inactive proposals
teachers
k-12 college COMMUNITY profiles

ADMINS
log-in
CONTACT US
HOME

Search

McCulloch-Pitts Neurons

Author: Michael Marsalli
Overview:

MODULE DESCRIPTION:
In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published "A logical calculus of the ideas immanent in nervous activity" in the Bulletin of Mathematica! Biophysics 5:115-133. In this paper McCulloch and Pitts tried to understand how the brain could produce highly complex patterns by using many basic cells that are connected together. These basic brain cells are called neurons, and McCulloch and Pitts gave a highly simplified model of a neuron in their paper. The McCulloch and Pitts model of a neuron, which we will call an MCP neuron for short, has made an important contribution to the development of artificial neural networks -- which model key features of biological neurons.

Boolean AND

input x1	input x2	ouput
0	0	0
0	1	0
1	0	0
1	1	1

Activate
threshold unit when:

$$
\sum_{j=1}^{n} W_{j, i} a_{j}>W_{0, i}
$$

Boolean OR

input x1	input x2	ouput
0	0	0
0	1	1
1	0	1
1	1	1

Activation of
threshold units when:

$$
\sum_{j=1}^{n} W_{j, i} a_{j}>W_{0, i}
$$

What should W_{0} be?

Inverter

input x1	output
0	1
1	0

Activation of

threshold units when:

$$
\sum_{j=1}^{n} W_{j, i} a_{j}>W_{0, i}
$$

AND

OR

NOT

Network Structures

Acyclic or Feed-forward networks Our focus

Activation flows from input layer to output layer

- single-layer perceptrons
- multi-layer perceptrons

Feed-forward networks implement functions, have no internal state (only weights).

Recurrent Networks

Can capture internal state (activation keeps going around);
\rightarrow more complex agents.

Brain cannot be a just a feed-forward network!
Brain has many feed-back connections and cycles
\rightarrow brain is a recurrent network!
Two key examples:

Hopfield networks:

Boltzmann Machines .

Feed-forward Network: Represents a function of Its Input

Two input units Two hidden units One Output

Each unit receives input only from units in the immediately preceding layer.

Given an input vector $x=\left(x_{1}, x_{2}\right)$, the activations of the input units are set to values of the input vector, i.e., $\left(a_{1}, a_{2}\right)=\left(x_{1}, x_{2}\right)$, and the network computes:

$$
\begin{aligned}
a_{5} & =g\left(W_{3,5} \cdot a_{3}+W_{4,5} \cdot a_{4}\right) \quad \text { Weights are the parameters of the } \\
& =g\left(W_{3,5} \cdot g\left(W_{1,3} \cdot a_{1}+W_{2,3} \cdot a_{2}\right)+W_{4,5} \cdot g\left(W_{1,4} \cdot a_{1}+W_{2,4} \cdot a_{2}\right)\right)
\end{aligned}
$$

Feed-forward network computes a parameterized family of functions $\mathbf{h}_{W}(\mathbf{x})$
By adjusting the weights we get different functions:
that is how learning is done in neural networks!

Intermezzo

Can AI. Be Pruaght toxzplainltself?

As machine learning becomes more powerful, the field's researchers increasingly find themselves unable to account for what their algorithms know - or how they know it.

By CLIFF KUANG NOV. 21, 2017
https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html

Hospital Emergency Admission Decision by Neural Net: Risk for pneumonia --- 10/11\% fatal! (early 90s)

Rich Caruana, an academic who works at Microsoft Research, has spent almost his entire career in the shadow of this problem. When he was earning his Ph.D at Carnegie Mellon University in the 1990s, his thesis adviser asked him and a group of others to train a neural net - a forerunner of the deep neural net - to help evaluate risks for patients with pneumonia. Between 10 and 11 percent of cases would be fatal;

Decide quickly, which patients to treat right away and which ones can wait.

Neural net trained on case history. Prediction accuracy better than human! ©

But, Caruana: Don't use it!

We don't know what it does! :

Specifically:
NN learned that "asthmatic patients tend to do well" ...
I.e., can be send home! (low risk...)

Why? Discovered regularity is indeed part of the data set used for training.

Hmm. What's going on?
Analysis: Hospital staff immediately identify asthma as serious risk. Gave best care! Patient goes home quickly...

Need for Human Interpretable AI! But at what down-side?
Compare: Decision trees vs. Neural Nets
May hurt overall performance!

Perceptron

Rosenblatt \&

Mark I Perceptron:

the first machine that could
"learn" to recognize and identify optical patterns.

Perceptron

- Invented by Frank Rosenblatt in 1957 in an attempt to understand human memory, learning, and cognitive processes.
- The first neural network model by computation, with a remarkable learning algorithm:
- If function can be represented by perceptron, the learning algorithm is guaranteed to quickly converge to the hidden function!
- Became the foundation of pattern recognition research

One of the earliest and most influential neural networks: An important milestone in AI.

Perceptron

ROSENBLATT, Frank.
(Cornell Aeronautical Laboratory at Cornell University)

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.

In, Psychological Review, Vol. 65, No. 6, pp. 386408, November, 1958.

Single Layer Feed-forward Neural Networks
 Perceptrons

Single-layer neural network (perceptron network)

A network with all the inputs connected directly to the outputs
-Output units all operate separately: no shared weights

I_{j}	$W_{j, i}$	O_{i}
Input		Output
Units		Units

Since each output unit is independent of the others, we can limit our study to single output perceptrons.
t

Perceptron Network

Perceptron to Learn to Identify Digits (From Pat. Winston, MIT)

Seven line segments are enough to produce all 10 digits

Digit	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
0	0	1	1	1	1	1	1
9	1	1	1	1	1	1	0
8	1	1	1	1	1	1	1
7	0	0	1	1	1	0	0
6	1	1	1	0	1	1	1
5	1	1	1	0	1	1	0
4	1	1	0	1	1	0	0
3	1	0	1	1	1	1	0
2	1	0	1	1	0	1	1
1	0	0	0	1	1	0	0

Perceptron to Learn to Identify Digits (From Pat. Winston, MIT)

Seven line segments are enough to produce all 10 digits

A vision system reports which of the seven segments in the display are on, therefore producing the inputs for the perceptron.

Perceptron to Learn to Identify Digit 0

Seven line segments are enough to produce all 10 digits

A vision system reports which of the seven segments in the display are on, therefore producing the inputs for the perceptron.

Perceptrons

Remarkable learning algorithm: (Rosenblatt 1960) if function can be represented by perceptron, then learning algorithm is guaranteed to quickly converge to the hidden function!
enormous popularity, early / mid 60's
But analysis by Minsky and Papert (1969) showed certain simple functions cannot be represented (Boolean XOR)
Killed the field! (and possibly Rosenblatt (rumored)).
But Minsky used a simplified model. Single layer.

Linearly separable functions only

(a) Separating plane
(b) Weights and threshold

Assume: $0 / 1$ signals. Open circles: "off" or " 0 ". Closed "on" or " 1 ".

XOR: Try solving
equations for
weights! (with threshold). Show unsolvable.

Mid eighties: comeback - multilayed networks (Turing machine compatible) learning procedures: backpropagation
Possibly one of the most popular / widely used learning methods today.
John Denker: "neural nets are the second best thing for learning anything!" Update: or perhaps the best! :)
backprop and perceptron learning

Handwritten digit recognition

3 -nearest-neighbor $=2.4 \%$ error
400-300-10 unit MLP $=1.6 \%$ error
LeNet: 768-192-30-10 unit MLP $=0.9 \%$ error
Current best (kernel machines, vision algorithms) $\approx 0.6 \%$ error (more specialized)

But, deep neural nets even better!

Representations

How are concepts represented in the brain / neural net?
local representations / grandmother cell distributed representations

Pros / Cons?
distributed appeared to have won but
UCLA researchers showed (1997)
single cell can learn a concept! (concept: facial expressions / a cell responding to "angry face"!)

Note: can discover hidden features ("regularities") unsupervised with multi-layer networks.

- Neural Net Learning

Perceptron Learning: Intuition

Weight Update

\rightarrow Input $\mathrm{I}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{n})$
\rightarrow Single output O: target output, T.
Consider some initial weights
Define example error:

$$
\mathrm{Err}=\mathrm{T}-\mathrm{O}
$$

Now just move weights in right direction!
If the error is positive, then we need to increase O .
Err $>0 \rightarrow$ need to increase O;
Err $<0 \rightarrow$ need to decrease O;
Each input unit j , contributes $\mathrm{W}_{\mathrm{j}} \mathrm{I}_{\mathrm{j}}$ to total input.

$1 \quad 4 \quad 0$

So, use:

$$
W_{j} \leftarrow W_{j}+\alpha \times I_{j} \times E r r
$$

Perceptron Learning Rule (Rosenblatt 1960)
α is the learning rate (for now assume 1).

Perceptron Learning: Simple Example

Let's consider an example (adapted from Patrick Wintson book, MIT)
Framework and notation:
$0 / 1$ signals
Input vector:

$$
\vec{X}=<x_{0}, x_{1}, x_{2} \cdots, x_{n}>
$$

Weight vector:

$$
W=<w_{0}, w_{1}, w_{2} \cdots, w_{n}>
$$

$\mathrm{x}_{0}=1$ and $\theta_{0}=-\mathrm{w}_{0}$, simulate the threshold.
O is output (0 or 1) (single output).
Learning rate $=1$.
Threshold function:

$$
S=\sum_{k=0}^{k=n} w_{k} x_{k} \quad S>0 \text { then } O=1 \quad \text { else } O=0
$$

$E r r=T-O$
$W_{j} \leftarrow W_{j}+\alpha \times I_{j} \times E r r$

Perceptron Learning: Simple Example

Set of examples, each example is a pair $\left(x_{i}, y_{i}\right)$ i.e., an input vector and a label y (0 or 1).

This procedure provably converges (polynomial number of steps) if the function is represented by a perceptron
(i.e., linearly separable)

Learning procedure, called the "error correcting method"

- Start with all zero weight vector.
- Cycle (repeatedly) through examples and for each example do:
- If perceptron is $\mathbf{0}$ while it should be $\mathbf{1}$, \longleftarrow Intuitively correct, add the input vector to the weight vector
- If perceptron is $\mathbf{1}$ while it should be 0 , subtract the input vector to the weight vector increased) !
- Otherwise do nothing.

Perceptron Learning: Simple Example

Consider learning the logical OR function.
Our examples are:

Sample	x 0	x 1	x 2	label
1	1	0	0	0
2	1	0	1	1
3	1	1	0	1
4	1	1	1	1

Activation Function

$$
S=\sum_{k=0}^{k=n} w_{k} x_{k} \quad S>0 \text { then } O=1 \quad \text { else } O=0
$$

$$
S=\sum_{k=0}^{k=n} w_{k} x_{k} \quad S>0 \text { then } O=1 \quad \text { else } \quad O=0
$$

Error correcting method
If perceptron is 0 while it should be 1 ,
add the input vector to the weight vector
If perceptron is 1 while it should be 0 ,

We' ll use a single perceptron with three inputs.
We' 11 start with all weights $0 \mathrm{~W}=<0,0,0>$

Example $1 \mathrm{I}=<100>$ label $=0 \mathrm{~W}=<0,0,0>$
Perceptron $(1 \times 0+0 \times 0+0 \times 0=0, \mathrm{~S}=0)$ output $\rightarrow 0$

\rightarrow it classifies it as 0 , so correct, do nothing

Example $2 \mathrm{I}=<101>$ label $=1 \mathrm{~W}=<0,0,0>$
Perceptron $(1 \times 0+0 \times 0+1 \times 0=0)$ output $\rightarrow 0$
\rightarrow it classifies it as 0 , while it should be 1 , so we add input to weights

$$
\mathrm{W}=<0,0,0>+<1,0,1>=<1,0,1>
$$

Example 3 I $=<110>$ label $=1 \mathrm{~W}=<1,0,1>$ Perceptron ($1 \times 0+1 \times 0+0 \times 0>0$) output $=1$ \rightarrow it classifies it as 1 , correct, do nothing

$$
\mathrm{W}=<1,0,1>
$$

Example $4 \quad \mathrm{I}=<111>$ label $=1 \mathrm{~W}=<1,0,1>$
Perceptron $(1 \times 0+1 \times 0+1 \times 0>0)$ output $=1$
\rightarrow it classifies it as 1 , correct, do nothing

$$
\mathrm{W}=<1,0,1>
$$

Perceptron Learning: Simple Example

Otherwise do nothing.

Epoch 2, through the examples, $\mathrm{W}=<1,0,1>$.

Example $1 \quad \mathrm{I}=<1,0,0>\quad$ label $=0 \mathrm{~W}=<1,0,1>$
Perceptron $(1 \times 1+0 \times 0+0 \times 1>0)$ output $\rightarrow 1$

\rightarrow it classifies it as 1 , while it should be 0 , so subtract input from weights

$$
\mathrm{W}=<1,0,1>-<1,0,0>=<0,0,1>
$$

Example $2 \mathrm{I}=<101>$ label $=1 \mathrm{~W}=<0,0,1>$
Perceptron ($1 \times 0+0 \times 0+1 \times 1>0$) output $\rightarrow 1$
\rightarrow it classifies it as 1 , so correct, do nothing

Example $3 \mathrm{I}=<110>$ label $=1 \mathrm{~W}=<0,0,1>$
Perceptron ($1 \times 0+1 \times 0+0 \times 1>0$) output $=0$
\rightarrow it classifies it as 0 , while it should be 1 , so add input to weights

$$
\mathrm{W}=<0,0,1>+\mathrm{W}=<1,1,0>=<1,1,1\rangle
$$

Example $4 \quad \mathrm{I}=<111>$ label $=1 \mathrm{~W}=<1,1,1>$
Perceptron $(1 \times 1+1 \times 1+1 \times 1>0)$ output $=1$
\rightarrow it classifies it as 1 , correct, do nothing

$$
\mathrm{W}=<1,1,1>
$$

Perceptron Learning: Simple Example

Epoch 3, through the examples, $\mathrm{W}=<1,1,1\rangle$.

Example $1 \quad \mathrm{I}=<1,0,0>$ label $=0 \mathrm{~W}=<1,1,1>$
Perceptron $(1 \times 1+0 \times 1+0 \times 1>0)$ output $\rightarrow 1$
\rightarrow it classifies it as 1 , while it should be 0 , so subtract input from weights

$$
\mathrm{W}=<1,1,1>-\mathrm{W}=<1,0,0>=<0,1,1>
$$

Example $2 \mathrm{I}=<101>$ label $=1 \mathrm{~W}=<0,1,1>$
Perceptron ($1 \times 0+0 \times 1+1 \times 1>0$) output $\rightarrow 1$
\rightarrow it classifies it as 1 , so correct, do nothing

Example $3 \quad \mathrm{I}=<110>$ label $=1 \mathrm{~W}=<0,1,1>$
Perceptron $(1 \times 0+1 \times 1+0 \times 1>0)$ output $=1$
\rightarrow it classifies it as 1 , correct, do nothing

Example $4 \quad \mathrm{I}=<111>$ label $=1 \mathrm{~W}=<0,1,1\rangle$
Perceptron $(1 \times 0+1 \times 1+1 \times 1>0)$ output $=1$
\rightarrow it classifies it as 1 , correct, do nothing

$$
\mathrm{W}=<1,1,1>
$$

Perceptron Learning: Simple Example

Epoch 4, through the examples, $\mathrm{W}=<0,1,1\rangle$.

Example $1 \mathrm{I}=<1,0,0>\quad$ label $=0 \mathrm{~W}=<0,1,1>$
Perceptron $(1 \times 0+0 \times 1+0 \times 1=0)$ output $\rightarrow 0$
\rightarrow it classifies it as 0 , so correct, do nothing

OR

So the final weight vector $\mathrm{W}=<0,1,1>$ classifies all examples correctly, and the perceptron has learned the function!

Aside: in more realistic cases the bias (W0) will not be 0 .
(This was just a toy example!)
Also, in general, many more inputs (100 to 1000)

Epoch	x 0	x 1	x 2	Desired Target	w0	w1	w2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0

Epoch	x0	x1	x2	Desired Target	w0	w1	w2	Output	Error	New w0	New w1	New w2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1

Epoch	x0	x1	x2	Desired Target	w0	w1	w2	Output	Error	New w0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1

Epoch	x0	x1	x2	Desired Target	w0	w1	w2	Output	Error	New w0	New w1	New w2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1

Epoch	x 0	x 1	x 2	Desired Target	w0	w1	w2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1

Epoch	x 0	x 1	x 2	Desired Target	w0	w1	w2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1

Epoch	x 0	x 1	x 2	Desired Target	w0	w1	w2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1
example 3	1	1	0	1	0	0	1	0	1	1	1	1

Epoch	x 0	x 1	x 2	Desired Target	w 0	w 1	w2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1
example 3	1	1	0	1	0	0	1	0	1	1	1	1
example 4	1	1	1	1	1	1	1	1	0	1	1	1

Epoch	x 0	x 1	x 2	Desired Target	w0	w 1	w 2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1
example 3	1	1	0	1	0	0	1	0	1	1	1	1
example 4	1	1	1	1	1	1	1	1	0	1	1	1
3 example 1	1	0	0	0	1	1	1	1	-1	0	1	1

Epoch	x 0	x 1	x 2	Desired Target	w 0	w 1	w 2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1
example 3	1	1	0	1	0	0	1	0	1	1	1	1
example 4	1	1	1	1	1	1	1	1	0	1	1	1
3 example 1	1	0	0	0	1	1	1	1	-1	0	1	1
example 2	1	0	1	1	0	1	1	1	0	0	1	1

Epoch	x 0	x 1	x 2	Desired Target	w 0	w 1	w2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1
example 3	1	1	0	1	0	0	1	0	1	1	1	1
example 4	1	1	1	1	1	1	1	1	0	1	1	1
3 example 1	1	0	0	0	1	1	1	1	-1	0	1	1
example 2	1	0	1	1	0	1	1	1	0	0	1	1
example 3	1	1	0	1	0	1	1	1	0	0	1	1

Epoch	x0	x 1	x2	$\begin{aligned} & \hline \begin{array}{l} \text { Desired } \\ \text { Target } \end{array} \end{aligned}$	w0	w1	w2	Output	Error	New w0	New w1	$\begin{array}{\|l\|} \hline \text { New } \\ \text { w2 } \end{array}$
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1
example 3	1	1	0	1	0	0	1	0	1	1	1	1
example 4	1	1	1	1	1	1	1	1	0	1	1	1
3 example 1	1	0	0	0	1	1	1	1	-1	0	1	1
example 2	1	0	1	1	0	1	1	1	0	0	1	1
example 3	1	1	0	1	0	1	1	1	0	0	1	1
example 4	1	1	1	1	0	1	1	1	0	0	1	1

Epoch	x 0	x 1	x 2	Desired Target	w0	w1	w2	Output	Error	New w 0	New w 1	New w 2
1 example 1	1	0	0	0	0	0	0	0	0	0	0	0
example 2	1	0	1	1	0	0	0	0	1	1	0	1
example 3	1	1	0	1	1	0	1	1	0	1	0	1
example 4	1	1	1	1	1	0	1	1	0	1	0	1
2 example 1	1	0	0	0	1	0	1	1	-1	0	0	1
example 2	1	0	1	1	0	0	1	1	0	0	0	1
example 3	1	1	0	1	0	0	1	0	1	1	1	1
example 4	1	1	1	1	1	1	1	1	0	1	1	1
3 example 1	1	0	0	0	1	1	1	1	-1	0	1	1
example 2	1	0	1	1	0	1	1	1	0	0	1	1
example 3	1	1	0	1	0	1	1	1	0	0	1	1
example 4	1	1	1	1	0	1	1	1	0	0	1	1
4 example 1	1	0	0	0	0	1	1	0	0	0	1	1

Convergence of Perceptron Learning Algorithm

Perceptron converges to a consistent function, if...
... training data linearly separable
\ldots step size α sufficiently small
... no "hidden" units

> Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

Good news: Adding hidden layer allows more target functions to be represented.

Minsky \& Papert (1969)

Multi-layer Perceptrons (MLPs)

Single-layer perceptrons can only represent linear decision surfaces.

Multi-layer perceptrons can represent non-linear decision surfaces.

Output units

The choice of how to represent the output then determines the form of the cross-entropy function

1. Linear output $\mathrm{z}=\mathrm{W}^{\mathrm{T}} \mathrm{h}+\mathrm{b}$. Often used as mean of Gaussian distribution.

$$
p(\boldsymbol{y} \mid \boldsymbol{x})=\mathcal{N}(\boldsymbol{y} ; \hat{\boldsymbol{y}}, \boldsymbol{I}) .
$$

2. Sigmoid function for Bernoulli distribution. Output $\mathrm{P}(\mathrm{y}=1 \mid \mathrm{x})$

Output units

3. Softmax for Multinoulli output distributions. Predict a vector, each element being $P(y=i \mid x)$
A linear layer

$$
\boldsymbol{z}=\boldsymbol{W}^{\top} \boldsymbol{h}+\boldsymbol{b}
$$

Softmax function

$$
\operatorname{softmax}(\boldsymbol{z})_{i}=\frac{\exp \left(z_{i}\right)}{\sum_{j} \exp \left(z_{j}\right)}
$$

Hidden Layer
Output Layer

Bad news: No algorithm for learning in multi-layered networks, and no convergence theorem was known in 1969!

Minsky \& Papert (1969) "[The perceptron] has many features to attract attention: its linearity; its intriguing learning theorem; its clear paradigmatic simplicity as a kind of parallel computation. There is no reason to suppose that any of these virtues carry over to the many-layered version. Nevertheless, we consider it to be an important research problem to elucidate (or reject) our intuitive judgment that the extension is sterile."

Minsky \& Papert (1969) pricked the neural network balloon ...they almost killed the field.

Rumors say these results may have killed Rosenblatt....
Winter of Neural Networks 69-86.

Two major problems they saw were

1. How can the learning algorithm apportion credit (or blame) to individual weights for incorrect classifications depending on a (sometimes) large number of weights?
2. How can such a network learn useful higher-order features?

Back Propagation - Next

Good news: Successful credit-apportionment learning algorithms developed soon afterwards (e.g., back-propagation). Still successful, in spite of lack of convergence theorem.

