CS 4700:
Foundations of Artificial Intelligence

Prof. Bart Selman
selman(@cs.cornell.edu

Machine Learning:
Neural Networks
R&N 18.7

Intro & perceptron learning

Rich history, starting in the early forties.
(McCulloch and Pitts 1943)
(including at least on suspicious death .. .)

Two views:
e Modeling the brain.
e “Just” representation of complex functions.

(Continuous; contrast decision trees.)
Much progress on both fronts.

Drawn interests from:

Neuro-science, Cognitive science, Al,

Physics, Statistics, and CS / FE.

Axonal arborization

Axon from another cell

\

Synapse

\/

Synapses

Cell body or Soma

Neurons / nerve cells

cell body or soma
branches: dendrited
single long fiber: axom
(100 or more times the diameter of cell body)
axon connects via synapsis to dendrites of other ¢
signals propagated via complicated electrochemical
reaction
each cell has a certain electrical potential
when above threshold, pulse is sent
down axon

Neuron: How the brain works

neurons ~ 100 Billion

synapses can increase (excitatory) / decrease
(inhibitory) potential (signal)
but most importantly: have plasticity — can
learn / remember!
In fact, learning can happen to single cell!
Note: current model gives neuron with little
stucture. Complexity arises out of connectivity.
Not clear this is “final” model.

Idea: collection of simple cells leads to complex
behavior: thought, action, and consciousness
Challenged by e.g. Penrose.

Contrast with current computer design.

Massively Parallel

Neurons: highly parallel computation.
10 to 100 steps — given simple timing
constraints, one can deduce that certain visual
and other cognitive computations are carried out
in about 10 to 100 layers of neurons.

Interesting experiments about how visual
features we can detect in parallel.

Appears to need massive parallelism.

neurons ~ 100 Billion
Why not build a model like a network of neurons?

4

Computer Human Brain
Computational units 1 CPU, 10° gates 10*! neurons
Storage units 10° bits RAM, 10*° buts disk 10! neurons, 10 synapses
Cycle time 10-8 sec 103 sec
Bandwidth 10° bits/sec 10 bits/sec
Neuron updates/sec 10° 101

Tempting enterprise:
Design computer modeled after the brain.

Good company: Von Neumann (1958)
The Computer and the Brain

But the connection machine was not successful
(Hillis 1989 / Thinking Machines)

64K processors.

What was the problem?

R&N:

The exact way in which the brain enables thought

is one of the great mysteries of science.

Much recent progress
Still, there are skeptics. Especially in CS.

The Skeptic’s Position

Related to “levels of abstractions” common in CS.
(less so in EE / Cogn. Sci.)

Consider: Try to figure out how a computer program
performing a heap sort works.

Q. How far would you get with a voltmeter? Wiring diagram?

Possibly the wrong level of abstraction!

Could be similar problem in understanding higher cognition
using FMRI scans!
Still, let’s see what neural net research has achieved.

New York Times: “Scientists See Promise in Deep-Learning
Programs,” Saturday, Nov. 24, front page.

http://www.nytimes.com/2012/11/24/science/scientists-see-advances-
in-deep-learning-a-part-of-artificial-intellicence.html?hpw

Multi-layer neural networks, a resurgence!

a) Winner one of the most recent learning competitions

b) Automatic (unsupervised) learning of “cat” and “human face”
from 10 million of Google images; 16,000 cores 3 days; multi-

layer neural network (Stanford & Google). ImageNet
http://image-net.org/

¢) Speech recognition and real-time translation (Microsoft
Research, China).
Aside: see web site for great survey article

“A Few Useful Things to Know About
Machine Learning” by Domingos, CACM, 2012.

Demo
Speech Translation

Start at min. 3:00. Deep Neural Nets in speech recognition.,

0

Artificial Neural Networks

Mathematical abstraction!

11

Basic Concepts

A Neural Network maps a set of inputs to a
set of outputs

Number of inputs/outputs 1s variable

The Network itself is composed of an
arbitrary number of nodes or units, connected
by links, with an arbitrary topology.

A link from unit 1 to unit j serves to propagate
the activation a; to j, and it has a weight
Wi

j.

What can a neural networks do?
Compute a known function / Approximate an unknown function
Pattern Recognition / Signal Processing
Learn to do any of the above

Carla P. Gomes
CS4700

Different
types of nodes

Carla P. Gomes
CS4700

An Artificial Neuron
Node or Unit:
A Mathematical Abstraction

here

Artificial Neuron,
Bias Weight Node or unit,

a,=-1 w\ Processing Unit {

W,

G,

a;

/In;ut

Input edges, utput

function(in;): L
each with weights Weighted(su;l)l ACtl\.fatIOIl " 0;1 tpl'liledgc.as},l
(positive, negative, and ©f its Inputs, function (g) ¢ =g (ZOZWJ”GJ) eéc. i we.zg ;
change over time, including applied to / (positive, negatn'/e, and
learning) fixed input a,. input functlon change OYer time,
n (typically learning)

" = ZWJJaJ non-linear).

=0
—> a processing element pré)ducing an output based on a function of its inputs

Note: the fixed input and bias weight are conventional; some authors instead, e.g., or a;=1 and -W;

Carla P. Gomes
CS4700

Activation Functions

ReLLU ---
Rectifier Linear Unit
(deep learning)
lot of the rectifier (blue) and =
oftplus (green) functions near x =0
g(ini) Q-(jn)
‘ & 1
+1 fa
+1
-t z'n?
in; '
(a) (b) r

(a) Threshold activation function = a step function or threshold function
(outputs 1 when the input is positive; 0 otherwise).

(b) Sigmoid (or logistics function) activation function (key advantage:
differentiable) 1/(1+¢77)

(¢) Sign function, +1 if input is positive, otherwise -1.

These functions have a threshold (either hard or soft) at zero.

—> Changing the bias weight W, ; moves the threshold location.

flz) =

The derivative of f(z) is:

f(z) x (1= f(z))

f'(z)

1
14e—=%

ds(x) _

1

ax

1+e *

= s(x)(1 = s(x))

0.8

Sigmoid s(2)
Derivative s'(z)

Weighted sum

Figure of sigmoid and derivative.
Note: largest derivative at x =0
That’s where neuron is most sensitive
to weight changes (effect of changes is
well “controlled”).

Threshold Activation Function

g(in;)

Bias Weight

ap=—)
0 H"O,z‘

)/

2
a;

\l

Input edges,
each with weights
(positive, negative, and
change over time,

learning)

0; threshold value
associated with
unit 1

n n
in, = ZWJ.,Z.aj >0; < in, = ij’l.a.
J=0 J=1

+ Wy, a, >0,

n
defining a, = —1 we get ZWj’iaj > Wy is 0, =Wy,

defining a, =1 we get ZW]

> =Wy, 0, = =W,

8

A g(iny)

+1

e . :t Carla P. Gomes
1 CS4700

Implementing Boolean Functions

Units with a threshold activation function
can act as logic gates; we can use these units
to compute Boolean function of its inputs.

Activation of
threshold units when:

JotJ

iW. a;, >W,,
j=1

Carla P. Gomes
CS4700

Historical context: Modeling neurons in our brain

as logical gates was a key event in viewing
’thinking as computation.”
The rest is history... ©

k3
e " H

3 "MINDPROJECT® CURRICULUM

CURRICULUM >
by category McCulloch-Pitts Neurons
by title Author: Michael Marsalli
RESEARCH -
intro to our robots Overview:

protothinker

complet(:)/rlgsggavlz m/ouwr \\‘m MODULE DESCRIPTION:

TEACHERS _1n—1943 Warren S. McCulloch,
coﬁééi . neuroscientist, and Walter Pitts, a
logician, published "A logical calculus of
COMMUNITY e ideas |mmanent in nervous actlwty
profiles in the ics
ADMINS 5:115-133. In this paper McCulloch and
log-in Pitts tried to understand how the brain
could produce highly complex patterns by
CONTACT US using many basic cells that are connected
HOME together. These basic brain cells are
called neurons, and McCulloch and Pitts
|:| gave a highly simplified model of a neuron in their paper. The McCulloch
and Pitts model of a neuron, which we will call an MCP neuron for short,

has made an important contribution to the development of artificial
neural networks -- which model key features of biological neurons.

19

Boolean AND

inputx1 | input x2 ouput
0 0 0
0 1 0
1 0 0
1 1 1
Activate

threshold unit when:

ZWa>W

JotJ

AR
i

What should W, be?

Carla P. Gomes
CS4700

Boolean OR

inputxl | inputx2 | ouput
0 0 0
0 1 1
1 0 1
1 1 1

Activation of

threshold units when:

ZWa>W

JotJ

W= /

What should W, be?

Carla P. Gomes
CS4700

Inverter

input x1 output
0 1
1 0

Activation of
threshold units when:

n
ZWj’ia '
j=1

> W,

Carla P. Gomes
CS4700

P

W=-1

NOT

Carla P. Gomes
CS4700

Network Structures

Acyclic or Feed-forward networks Oyr focus
Activation flows from input layer to
output layer

— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions,
have no internal state (only weights).

Recurrent networks
— Feed the outputs back into own inputs
—>Network is a dynamical system
(stable state, oscillations, chaotic behavior)
- Response of the network depends on initial state
— Can support short-term memory
— More difficult to understand

Carla P. Gomes
CS4700

Recurrent Networks

Can capture internal state (activation keeps going around);

—> more complex agents.

Brain cannot be a just a feed-forward network!
Brain has many feed-back connections and cycles
=> brain is a recurrent network!

Two key examples:

Hopfield networks:

Boltzmann Machines .

Carla P. Gomes
CS4700

Feed-forward Network:
Represents a function of Its Input

Two input units Two hidden units One Output

Each unit receives input only
from units in the immediately
@ preceding layer.

(Bias unit omitted

for simplicity) W
24

Given an input vector X = (x,X,), the activations of the input units are set to values of the

input vector, 1.e., (a;,2,)=(x1,X,), and the network computes:

N . , Weights are the parameters of the function
ar = (/III 35 °* A3 -+ II 4.5 * Q4)) B

g

= g(Ws5 - gWis-a1+Was-as)+Wys - gWig a1 +Woy-as))

Feed-forward network computes a parameterized family of functions hy(x)

By adjusting the weights we get different functions:
that is how learning is done in neural networks!

. Carla P. Gomes
Note: the input layer in general does not include computing units. CS4700

Carla P. Gomes
CS4700

Home &lhe New Pork Eimes Magazine Share W 194

Intermezzo

Can AL Be Taught
to Explain Itself?

As machine learning becomes more powerful,
the field’s researchers increasingly find
themselves unable to account for what their
algorithms know — or how they know it.

By CLIFF KUANG NOV. 21, 2017

28

Hospital Emergency Admission Decision by Neural Net:
Risk for pneumonia --- 10/11% fatal! (early 90s)

Rich Caruana, an academic who works at Microsoft Research, has spent
almost his entire career in the shadow of this problem. When he was
earning his Ph.D at Carnegie Mellon University in the 1990s, his thesis
adviser asked him and a group of others to train a neural net — a
forerunner of the deep neural net — to help evaluate risks for patients
with pneumonia. Between 10 and 11 percent of cases would be fatal;

Decide quickly, which patients to treat right away and which
ones can wait.

Neural net trained on case history. Prediction accuracy
better than human! ©

But, Caruana: Don’t use it!
We don’t know what it does! ® 29

Specifically:
NN learned that “asthmatic patients tend to do well” ...

I.e., can be send home! (low risk...)

Why? Discovered regularity is indeed part of the data set used
for training.

Hmm. What’s going on?

Analysis: Hospital staff immediately identify asthma
as serious risk. Gave best care! Patient goes home quickly...

Need for Human Interpretable AI! But at what down-side?
Compare: Decision trees vs. Neural Nets

May hurt overall performance! 10

Perceptron

Cornell Aeronautical Laboratory

Rosenblatt &
Mark I Perceptron:
the first machine that could
"learn" to recognize and
identify optical patterns.

Perceptron

— Invented by Frank Rosenblatt in 1957 in an
attempt to understand human memory, learning,
and cognitive processes.

— The first neural network model by computation,
with a remarkable learning algorithm:

 If function can be represented by perceptron, the
learning algorithm is guaranteed to quickly
converge to the hidden function!
— Became the foundation of pattern recognition
research

One of the earliest and most influential neural networks:
An important milestone in Al

Carla P. Gomes
CS4700

here

Perceptron

ROSENBLATT, Frank.

(Cornell Aeronautical Laboratory at Cornell
University)

The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain.

In, Psychological Review, Vol. 65, No. 6, pp. 386-
408, November, 1958.

Carla P. Gomes
CS4700

Single Layer Feed-forward Neural Networks
Perceptrons

Single-layer neural network (perceptron network)

A network with all the inputs connected directly to the outputs

—Output units all operate separately: no shared weights

Since each output unit 1s
independent of the others,
we can limit our study
to single output perceptrons.

Perceptron Network

Carla P. Gomes
CS4700

Perceptron to Learn to Identify Digits
(From Pat. Winston, MIT)

Digit | X X1 X» X3 X4 X5 Xg
0 0 1 1 1 1 1 1
9 1 1 1 1 1 1 0
Seven line segments | 8 1 1 1 1 1 1 1
are enough to produce 7 0 0 1 1 1 0 0
11 10 dig1
all 10 digits 6 |1 |1 |1 o |1 |1 |1
2 5 1 1 1 0 1 1 0
4 1 1 0 1 1 0 0
— N
3 1 0 1 1 1 1 0
0 > 1 o |1 1 o |1 1
Neo) <t 1 0 0 0 1 1 0 0
5 Carlg 54 7((})?)mes

Perceptron to Learn to Identify Digits
(From Pat. Winston, MIT)

Seven line segments

are enough to produce
all 10 digits

2
— N
0
Ne <t A vision system reports which of the seven segments
in the display are on, therefore producing the inputs
5 for the perceptron. esin

Perceptron to Learn to Identify Digit 0

Digit | x X1 X5 X3 X4 X5 Xe | X7
(fixed
input)

0 0 1 1 | 1 1 1 |1

When the input digit is 0,
what’ s the value of

Seven line segments

are enough to produce
all 10 digits

2
— N
0
A vision system reports which of the seven segments
5 in the display are on, therefore producing the inputs for the perceptron.

Perceptrons

Remarkable learning algorithm: (Rosenblatt 1960)
if function can be represented by perceptron,

then learning algorithm is guaranteed to quickly converge
to the hidden function!

enormous popularity, early / mid 60’s

But analysis by Minsky and Papert (1969)
showed certain simple functions cannot be represented
(Boolean XOR)
Killed the field! (and possibly Rosenblatt (rumored)).

But Minsky used a simplified model. Single layer.
37

Linearly separable functions only

(a) Separating plane (b) Weights and threshold

Assume: 0/1 signals. Open circles: “off” or “0”. Closed “on” or “1”’.

38

Il“x\‘ Il ‘ Il ‘

10 . @ 1@ ® 1@
?
00 O, 00— @ 00
0 1 L 0 R B £ 0
(@ [, and I, (b I, or I, (© I, xor I,

XOR: Try solving
equations for

weights! (with threshold).
Show unsolvable. “

Mid eighties: comeback — multilayed networks
(Turing machine compatible)
learning procedures: backpropagation

Possibly one of the most popular / widely used learning
methods today.

John Denker: “neural nets are the second best thing for
learning anything!” Update: or perhaps the best! ©

backprop and perceptron learning

40

Handwritten digit recognition

0

/

>

S

v

g

(

)

¢

9)

b
6

y
g

J
p

3-nearest-neighbor = 2.4% error

400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) a2 0.6% error (more specialized)

But, deep neural nets even better!

41

Representations

How are concepts represented in the brain / neural net?

local representations / grandmother cell
distributed representations

Pros / Cons?
distributed appeared to have won but
UCLA researchers showed (1997)
single cell can learn a concept! (concept: facial
expressions / a cell responding to “angry face”!)

Note: can discover hidden features (“regularities”)
unsupervised with multi-layer networks.
42

e Neural Net Learning

43

Perceptron Learning:

Weight Update

= Input [; (j=1,2,...,n)

—> Single output O: target output, T.

Consider some 1nitial weights

Define example error: Err=T-0
Now just move weights in right direction!

If the error is positive, then we need to increase O.

Err >0 - need to increase O;
Err <0 = need to decrease O;
Each input unit j, contributes W; [; to total input.
So, use:
W, €W+ oaxl xErr
Perceptron Learning Rule (Rosenblatt 1960)

Intuition

\

o. is the learning rate
(for now assume 1).

Perceptron Learning:
Simple Example

Let’ s consider an example (adapted from Patrick Wintson book, MIT)
Framework and notation:
0/1 signals

Input vector: 2
X =< X, X[, Xy 0", X, >

n

Weight vector: 2
=< Wy, W, Wy =, W, >

X, = 1 and 0,=-w,, simulate the threshold.

O 1s output (0 or 1) (single output).
Learning rate = 1.

N

Threshold function: e
TSI O Sy x S>0thenO=1 else 0=0
k=0

Carla P. Gomes
CS4700

Err=T-0 Perceptron Learning:
W; € W;+ o xl; x Err Simple Example

%

Set of examples, each example is a pair (x;,),) | This procedure provably converges
(polynomial number of steps)

if the function is represented
by a perceptron
(i.e., linearly separable)

1.e., an input vector and a label y (0 or 1).

Learning procedure, called the “error correcting method”

« Start with all zero weight vector.
* Cycle (repeatedly) through examples and for each example do:

— If perceptron is 0 while it should be 1, <— Intuitively correct,
(e.g., 1f output 1s 0
but it should be 1,
the weights are
subtract the input vector to the weight vector increased) !

add the input vector to the weight vector
— If perceptron is 1 while it should be 0,

- OtherWise dO nOthing. Carla P. Gomes

CS4700

Perceptron Learning:

Simple Example
Consider learning the logical OR function.
Our examples are:
Sample x0 x1 x2 label
1 1 0 0 0
2 1 0 1 1
3 1 1 0 1
4 1 1 1 1

. . . k
Activation Function S=>wx, S>0thenO=1 else O=0
k=0

Il
S

Carla P. Gomes
CS4700

k=n
S=Zwkxk S>0thenO=1 else O0=0
k=0

[J
Error correcting method Perceptl‘Oll Leal‘nlng .
If perceptron is 0 while it should be 1, .
add the input vector to the weight vector
If perceptron is 1 while it should be 0, Slmple Example

subtract the input vector to the weight vector
Otherwise do nothing.

We' 1l use a single perceptron with three inputs.
We' 1l start with all weights 0 W= <0,0,0>

Example I I=<100> label=0 W= <0,0,0>
Perceptron (1x0+ 0x0+ 0x0 =0, S=0) output = 0
—>1t classifies it as 0, so correct, do nothing

Example 2 =<1 0 1> label=1 W= <0,0,0>
Perceptron (1x0+ 0x0+ 1x0 = 0) output =0

—>1it classifies it as 0, while it should be 1, so we add input to weights
W =<0,0,0>+<1,0,1>=<1,0,1>

Carla P. Gomes
CS4700

Example 3 [=<11 0> label=1 W= <1,0,1>
Perceptron (1x0+ 1x0+ 0x0 > 0) output =1
—>1t classifies it as 1, correct, do nothing
W=<1,0,1>

Example 4 [=<11 1> label=1 W= <1,0,1>
Perceptron (1x0+ 1x0+ 1x0 > 0) output =1
—> it classifies it as 1, correct, do nothing
W =<1,0,1>

Carla P. Gomes
CS4700

Error correcting method o
If perceptron is 0 while it should be 1, Perceptron L e arnlng :
add the input vector to the weight vector

If perceptron is 1 while it should be 0, Simple Example

subtract the input vector from the weight vector
Otherwise do nothing.

Epoch 2, through the examples, W = <1,0,1> .

Example 1 1=<1,0,0> label=0 W =<1,0,1>
Perceptron (1x1+ 0x0+ 0x1 >0) output = 1

—>1it classifies it as 1, while it should be 0, so subtract input from weights
W =<1,0,1> -<1,0,0>=<0, 0, 1>

Example 2 =<1 0 1> label=1 W= <0,0,1>
Perceptron (1x0+ 0x0+ 1x1 > 0) output = 1
—>it classifies it as 1, so correct, do nothing

Carla P. Gomes
CS4700

Example 3 [=<11 0> label=1 W= <0,0,1>
Perceptron (1x0+ 1x0+ 0x1 > 0) output =0
—>1t classifies it as 0, while it should be 1, so add input to weights
W=<0,0,1> +W=<1,1,0> =<1, 1, 1>

Example 4 [=<11 1> label=1 W= <1,1,1>
Perceptron (1x1+ 1x1+ 1x1 >0) output =1
—>1it classifies it as 1, correct, do nothing
W=<1,1,1>

Carla P. Gomes
CS4700

Perceptron Learning:
Simple Example

Epoch 3, through the examples, W =<1,1,1> .

Example 1 [=<1,0,0> label=0 W =<1,1,1>
Perceptron (1x1+ 0x1+ 0x1 >0) output = 1

—>1it classifies it as 1, while it should be 0, so subtract input from weights
W=<1,1,1> -W=<1,0,0> =<0, 1, 1>

Example 2 =<1 0 1> label=1 W= <0, 1, 1>
Perceptron (1x0+ 0x1+ 1x1 > 0) output = 1
—>it classifies it as 1, so correct, do nothing

Carla P. Gomes
CS4700

Example 3 I=<11 0> label=1 W= <0, 1, 1>
Perceptron (1x0+ 1x1+ 0x1 > 0) output =1
—>1t classifies it as 1, correct, do nothing

Example 4 I=<11 1> label=1 W= <0, 1, 1>
Perceptron (1x0+ 1x1+ 1x1 > 0) output =1
—>1t classifies it as 1, correct, do nothing
W=<1,1,1>

Carla P. Gomes
CS4700

Perceptron Learning:
Simple Example

Epoch 4, through the examples, W= <0, 1, 1>.

Example 1 I= <1,0,0> label=0 W =<0,1,1>
Perceptron (1x0+ 0x1+ 0x1 = 0) output = 0
—> it classifies it as 0, so correct, do nothing

So the final weight vector W= <0, 1, 1> classifies all OR
examples correctly, and the perceptron has learned the function!

Aside: in more realistic cases the bias (WO0) will not be 0.
(This was just a toy example!)
Also, in general, many more inputs (100 to 1000) Carla P. Gomes

CS4700

Epoch x0 | x1 [x2 | Desired | w0 |[wl |[w2 | Output | Error | New | New | New
Target 9
w0 | wl W
1 example 1 1 0 0 0 0 0 0 0 0 0 0 0

Epoch

x0 | x1 [x2 | Desired | w0 |[wl |[w2 | Output | Error | New | New | New
Target 9
w0 | wl W
1 example 1 1 0 0 0 0 0 0 0
example 2 |] 1 1 0 0 |0 1 1 0 1

Epoch

x0

x1

x2

Desired

w0

wl

w2 | Output | Error | New | New [New
farect w0 wl w2
1 example1 | 1 0 (0 0 0 0 0 0
example 2|] 1 |1 0 0O |0 1 1 0 1
example 3 |] 0 |1 1 1 1 0 1 0 1

Epoch

Desired

x0 | x1 | x2 w0 [wl [w2 | Output | Error | New | New | New
Target
w0 | wl w2
1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example2 |] [(Q |1 1 O (0 (0 (O 1 1 0 1
example3 |] |1 [(Q |1 1 [0 |1 1 0 1 0 1
example4 |] 1 |] 1 1 [0 |1 1 0 1 0 1

Epoch

Desired

x0 | x1 | x2 w0 [wl [w2 | Output | Error | New | New | New
Target
w0 | wl w2
1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example2 1 1 [0 (1 |1 O [0 |O |O 1 1 0 1
example3 1 7 |1 [0 |1 1 |0 |1 1 0 1 0 1
example4 | 1 11 (1 |1 1 |0 |1 1 0 1 0 1
2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1

Desired

Epoch X0 | xI | x2 | Desred | w0 | wl | w2 | Output | Error | New | New | New
wo | wl | W2

I example1 [1 |O [0 [O O (0 (0 (O 0 0 0 0
example2 | 1 |1 (Q |1 1 O (0 |0 |0 1 1 0 1
example3 | 1 |1 [0 |1 I (0 |1 1 0 1 0 1
example4 | 1 [1 |1 1 I (0 |1 1 0 1 0 1

2examplel |1 [0 |0 [0 I (0 |1 1 -1 0 0 1
example2 | 1 | (Q |1 1 0O (0 |1 1 0 0 0 1

Epoch x0 | x1 | x2 ?::;etd w0 | wl | w2 [Output | Error | New | New | New
wo |wl | W2

l example1 |1 [O [0 |0 0O |0 [0 |O 0 0 0 0
example2 | 1 1 (1 |1 0O |0 [0 |O 1 1 0 1
example3 |] |1 [(Q |1 1 [0 |1 1 0 1 0 1
example4 |1 [1 |1 |1 1 [0 |1 1 0 1 0 1

2examplel |1 [0 |0 |0 1 [0 |1 1 -1 0 0 1
example2 | 1 (0 [1 |1 0 (0 |1 1 0 0 0 1
example3 |] |1 [(Q |1 O (0 (1 (O 1 1 1 1

Epoch x0 | x1 | x2 ?::;etd w0 | wl | w2 [Output | Error | New | New | New
wo |wl | W2

l example1 |1 [O [0 |0 0O |0 [0 |O 0 0 0 0
example2 | 1 1 (1 |1 0O |0 [0 |O 1 1 0 1
example3 |] |1 [(Q |1 1 [0 |1 1 0 1 0 1
example4 |1 [1 |1 |1 1 [0 |1 1 0 1 0 1

2examplel |1 [0 |0 |0 1 [0 |1 1 -1 0 0 1
example2 | 1 (0 [1 |1 0 (0 |1 1 0 0 0 1
example3 |] |1 [(Q |1 O (0 (1 (O 1 1 1 1
example4 |] |1 1 |1 1 1 1 1 0 1 1 1

Epoch x0 | x1 | x2 ?::;etd w0 | wl | w2 [Output | Error | New | New | New
wo |wl | W2
l example1 |1 [O [0 |0 0O |0 [0 |O 0 0 0 0
example2 | 1 1 (1 |1 0O |0 [0 |O 1 1 0 1
example3 |] |1 [(Q |1 1 [0 |1 1 0 1 0 1
example4 |1 [1 |1 |1 1 [0 |1 1 0 1 0 1
2examplel |1 [0 |0 |0 1 [0 |1 1 -1 0 0 1
example2 | 1 (0 [1 |1 0 (0 |1 1 0 0 0 1
example3 |] |1 [(Q |1 O (0 (1 (O 1 1 1 1
example4 |] |1 1 |1 1 1 1 1 0 1 1 1
3example1 |1 [0 [0 |0 1 1 1 1 -1 0 1 1

Epoch x0 | x1 | x2 ?::;etd w0 | wl | w2 [Output | Error | New | New | New
wo |wl | W2
l example1 |1 [O [0 |0 0O |0 [0 |O 0 0 0 0
example2 | 1 1 (1 |1 0O |0 [0 |O 1 1 0 1
example3 |] |1 [(Q |1 1 [0 |1 1 0 1 0 1
example4 |1 [1 |1 |1 1 [0 |1 1 0 1 0 1
2examplel |1 [0 |0 |0 1 [0 |1 1 -1 0 0 1
example2 | 1 (0 [1 |1 0 (0 |1 1 0 0 0 1
example3 |] |1 [(Q |1 O (0 (1 (O 1 1 1 1
example4 |] |1 1 |1 1 1 1 1 0 1 1 1
3example1 |1 [0 [0 |0 1 1 1 1 -1 0 1 1
example2 11 10 |1 |1 0 |1 1 1 0 0 1 1

Epoch x0 | x1 | x2 ?::;etd w0 | wl | w2 [Output | Error | New | New | New
wo |wl | W2
l example1 |1 [O [0 |0 0O |0 [0 |O 0 0 0 0
example2 | 1 1 (1 |1 0O |0 [0 |O 1 1 0 1
example3 |] |1 [(Q |1 1 [0 |1 1 0 1 0 1
example4 |1 [1 |1 |1 1 [0 |1 1 0 1 0 1
2examplel |1 [0 |0 |0 1 [0 |1 1 -1 0 0 1
example2 | 1 (0 [1 |1 0 (0 |1 1 0 0 0 1
example3 |] |1 [(Q |1 O (0 (1 (O 1 1 1 1
example4 |] |1 1 |1 1 1 1 1 0 1 1 1
3example1 |1 [0 [0 |0 1 1 1 1 -1 0 1 1
example2 11 [(Q 1 |1 0 |1 1 1 0 1 1
example3 |1 |1 [(Q |1 0 |1 1 1 0 1 1

Epoch x0 | x1 | x2 ?::;etd w0 | wl | w2 [Output | Error | New | New | New
wo | wl | W2
l exampler [1 [O [O [0 O [0 |O |O 0 0 0 0
example2 1 1 [0 (1 |1 O [0 |O |O 1 1 0 1
example3 | 1 11 (0 |1 1 |0 |1 |1 0 1 0 1
example4 |1 |1 |1 |1 1 |0 |1 |1 0 1 0 1
2examplel |1 [0 [0 [0 1 |0 |1 |1 -1 0 0 1
example2 | 1 1 (Q (1 |1 0O |0 |1 |1 0 0 0 1
example3 | 1 11 (0 |1 O |0 (I |0 1 1 1 1
example4 | 1 11 (1 |1 1 |1 |1 |1 0 1 1 1
3example1 [1 [0 [O [0 1 |1 |1 |1 -1 0 1 1
example2 | 1 1 (0 (1 |1 O |1 |1 |1 0 1 1
example3 | 1 11 (0 |1 O |1 |1 |1 0 1 1
example 4 |]|] 1 O |1 |1 |1 0 1 1

B o

Z 2|l o]l —|—]l—]—]—=|—|—]— — = - —

Z -

Z 2lo|lo|loco|lo|lo|lo|— | —|— —_—] | e —

5 o

Z 2lo|l— |~ —|O|O|—~|—|O olo|lo | o

'

=

0 ol—|lo|lo|T|lo|—~|o| T |olo|lo|o

=

&

=

@) OO = | | —| —]| | =] —_—] | -]

(@

= OO | — | —]| = —] —] —| — —_—] | e -

= el Nel ol NIeolNeolEeol Nl R ol B — o = —

(e}

= ol —~|—|— ||| —|— olo|lo | o

]

e B

=

MnTa O | | | et | OO | | - O _—] e | - | ©

ZX O~ | O]~ ||~ || —~| O —_— o~ O

= olo|~|—~|o|lo|~|—~|o |o|~|—|o

OX —_— o]] —] — | —] — —_—] | —] —
T I o R B e I I A R S)

o | &« | &8 Q| & | & = | a8 | =

EIE|E| E| E|E|E|E|E |E|E|E| E

5 | 8 | 2 S| 2|2 |8 | & < | S |3 |§ >

g Ol o | o 5| oo | o | ©) S = 13

< o

Convergence of Perceptron
Learning Algorithm

Perceptron converges to a consistent function, if...

... training data linearly separable
... step size o sufficiently small

... 1no “hidden” units

Carla P. Gomes
CS4700

—
]

- ot .
PPNl i NPV % =X.,

Perceptron ——e—

Decision tree = —

© © © o ©
o O N @ ©

0.4

Proportion correct on test set

0 10 20 30 40 50 60 70 80 90 100
Training set size - MAJORITY on 11 inputs

Perceptron learns majority function easily,
DTL 1s hopeless

Carla P. Gomes
CS4700

Proportion correct on test set

© © oo o O

S O N 0 © =

Perceptron =—e—

Decision tree ===«

0 10 20 30 40 50 60 70 80 90 100
Training set size - RESTAURANT data

DTL learns restaurant function easily,
perceptron cannot represent it

Carla P. Gomes
CS4700

Perceptrons

Good news: Adding hidden layer allows more target
functions to be represented.

Minsky & Papert (1969)

Carla P. Gomes
CS4700

Multi-layer Perceptrons (MLPs)

Single-layer perceptrons can only represent linear decision surfaces.

Multi-layer perceptrons can represent non-linear decision surfaces.

o head
& hid

+ hod

v had

+ hawad
» heard
o heed
¢« hud
 who'd
~ hood

head hid * who'd hood

Hidden
Layer

Q 500 1000 1400

Output units

The choice of how to represent the output then determines the form of the
cross-entropy function

1. Linear output z= WT h + b. Often used as mean of Gaussian
distribution.

p(y |) =N(y;9y,I).

2. Sigmoid function for Bernoulli distribution. Output P(y=1 | x)

Carla P. Gomes
CS4700

Output units

3. Softmax for Multinoulli output distributions. Predict a vector, each
element being P(y = 1| x)

A linear layer

z=WTh4+b,

Softmax function

exp(z;)

> exp(z)

softmax(z); =

Carla P. Gomes
CS4700

@
D
(3

<@

=

P e

Wa3)

Hidden Layer

|

XeW3J0S

q

Output Layer

aP.Go
000000

Bad news: No algorithm for learning in multi-layered

networks, and no convergence theorem was known in
1969!

Minsky & Papert (1969) “[The perceptron] has many features to attract attention: its
linearity; its intriguing learning theorem; its clear paradigmatic simplicity as a
kind of parallel computation. There is no reason to suppose that any of these
virtues carry over to the many-layered version. Nevertheless, we consider it to
be an important research problem to elucidate (or reject) our intuitive judgment
that the extension is sterile.”

Minsky & Papert (1969) pricked the neural network balloon ...they almost killed the
field.

Rumors say these results may have killed Rosenblatt....

Winter of Neural Networks 69-86.

Carla P. Gomes
CS4700

Two major problems they saw were

1. How can the learning algorithm apportion credit (or blame) to
individual weights for incorrect classifications depending on a
(sometimes) large number of weights?

2. How can such a network learn useful higher-order features?

Carla P. Gomes
CS4700

Back Propagation - Next

Good news: Successful credit-apportionment learning algorithms
developed soon afterwards (e.g., back-propagation). Still successful, in
spite of lack of convergence theorem.

Carla P. Gomes
CS4700

