
1

CS 4700:
Foundations of Artificial Intelligence

Prof. Bart Selman
selman@cs.cornell.edu

Machine Learning:
Neural Networks

R&N 18.7

Intro & perceptron learning

2

3

Neuron: How the brain works

neurons ~ 100 Billion

4

neurons ~ 100 Billion
Why not build a model like a network of neurons?

5

6

7

8

9

New York Times: “Scientists See Promise in Deep-Learning
Programs,” Saturday, Nov. 24, front page.
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-

in-deep-learning-a-part-of-artificial-intelligence.html?hpw

Multi-layer neural networks, a resurgence!
a) Winner one of the most recent learning competitions
b) Automatic (unsupervised) learning of “cat” and “human face”

from 10 million of Google images; 16,000 cores 3 days; multi-
layer neural network (Stanford & Google). ImageNet
http://image-net.org/

c) Speech recognition and real-time translation (Microsoft
Research, China).

Aside: see web site for great survey article
“A Few Useful Things to Know About
Machine Learning” by Domingos, CACM, 2012.

10Start at min. 3:00. Deep Neural Nets in speech recognition.

11

Carla P. Gomes
CS4700

Basic Concepts

Neural Network

Input 0 Input 1 Input n...

Output 0 Output 1 Output m...

A Neural Network maps a set of inputs to a
set of outputs

Number of inputs/outputs is variable
The Network itself is composed of an
arbitrary number of nodes or units, connected
by links, with an arbitrary topology.
A link from unit i to unit j serves to propagate

the activation ai to j, and it has a weight
Wij.

What can a neural networks do?
Compute a known function / Approximate an unknown function
Pattern Recognition / Signal Processing
Learn to do any of the above

Carla P. Gomes
CS4700

Different
types of nodes

Carla P. Gomes
CS4700

Output edges,
each with weights

(positive, negative, and
change over time,

learning)

Input edges,
each with weights

(positive, negative, and
change over time,

learning)

An Artificial Neuron
Node or Unit:

A Mathematical Abstraction
Artificial Neuron,

Node or unit ,
Processing Unit i

j

n

j
iji aWin å

=

=
0

,

Input
function(ini):
weighted sum
of its inputs,

including

fixed input a0.

à a processing element producing an output based on a function of its inputs

Activation
function (g)

applied to
input function

(typically
non-linear).

Output

)(
0

, j

n

j
iji aWga å

=

=

Note: the fixed input and bias weight are conventional; some authors instead, e.g., or a0=1 and -W0i

here

(a) Threshold activation function à a step function or threshold function
(outputs 1 when the input is positive; 0 otherwise).
(b) Sigmoid (or logistics function) activation function (key advantage:

differentiable)
(c) Sign function, +1 if input is positive, otherwise -1.

Activation Functions

à Changing the bias weight W0,i moves the threshold location.
These functions have a threshold (either hard or soft) at zero.

ReLU ---
Rectifier Linear Unit
(deep learning)

16

Carla P. Gomes
CS4700

Threshold Activation Function

Input edges,
each with weights

(positive, negative, and
change over time,

learning)

;0
0

, >=å
=

j

n

j
iji aWin

qi=0 qi=t

iiij

n

j
ij wwaWgetweadefining ,0,0

1
,0 ,1 =>-= å

=

q

;00,0
1

, >+=Û å
=

awawin ij

n

j
iji

qi threshold value
associated with
unit i

iiij

n

j
ij wwaWgetweadefining ,0,0

1
,0 ,1 -=->= å

=

q

Carla P. Gomes
CS4700

i

n

j
jij WaW ,0

1
, >å

=

Implementing Boolean Functions

Units with a threshold activation function
can act as logic gates; we can use these units
to compute Boolean function of its inputs.

Activation of
threshold units when:

19

Historical context: Modeling neurons in our brain
as logical gates was a key event in viewing
”thinking as computation.”
The rest is history… J

Carla P. Gomes
CS4700

Boolean AND

input x1 input x2 ouput

0 0 0

0 1 0

1 0 0

1 1 1

x2x1

w2=1w1=1

w0= 1.5

-1

i

n

j
jij WaW ,0

1
, >å

=

Activate
threshold unit when: What should W0 be?

W0?

Carla P. Gomes
CS4700

Boolean OR

input x1 input x2 ouput

0 0 0

0 1 1

1 0 1

1 1 1

x2x1

w2=1w1=1

w0= 0.5

-1

i

n

j
jij WaW ,0

1
, >å

=

Activation of
threshold units when: What should W0 be?

w0?

Carla P. Gomes
CS4700

Inverter

input x1 output

0 1

1 0

x1

w1= -1-1

w0= -0.5

i

n

j
jij WaW ,0

1
, >å

=

Activation of
threshold units when:

Bla

Carla P. Gomes
CS4700

Carla P. Gomes
CS4700

Network Structures

Acyclic or Feed-forward networks
Activation flows from input layer to
output layer
– single-layer perceptrons
– multi-layer perceptrons

Recurrent networks
– Feed the outputs back into own inputs

àNetwork is a dynamical system
(stable state, oscillations, chaotic behavior)
àResponse of the network depends on initial state

– Can support short-term memory
– More difficult to understand

Feed-forward networks implement functions,
have no internal state (only weights).

Our focus

Carla P. Gomes
CS4700

Recurrent Networks

Can capture internal state (activation keeps going around);
à more complex agents.

Brain cannot be a just a feed-forward network!
Brain has many feed-back connections and cycles

à brain is a recurrent network!

Two key examples:

Hopfield networks:

Boltzmann Machines .

Carla P. Gomes
CS4700

Feed-forward Network:
Represents a function of Its Input

Two hidden unitsTwo input units One Output

By adjusting the weights we get different functions:
that is how learning is done in neural networks!

Each unit receives input only
from units in the immediately

preceding layer.

Given an input vector x = (x1,x2), the activations of the input units are set to values of the
input vector, i.e., (a1,a2)=(x1,x2), and the network computes:

Feed-forward network computes a parameterized family of functions hW(x)

(Bias unit omitted
for simplicity)

Note: the input layer in general does not include computing units.

Weights are the parameters of the function

Carla P. Gomes
CS4700

28

Intermezzo

https://www.nytimes.com/2017/11/21/magazine/can-ai-be-
taught-to-explain-itself.html

29

Hospital Emergency Admission Decision by Neural Net:
Risk for pneumonia --- 10/11% fatal! (early 90s)

Decide quickly, which patients to treat right away and which
ones can wait.

Neural net trained on case history. Prediction accuracy
better than human! J

But, Caruana: Don’t use it!
We don’t know what it does! L

30

Specifically:

NN learned that “asthmatic patients tend to do well” …
I.e., can be send home! (low risk…)

Why? Discovered regularity is indeed part of the data set used
for training.

Hmm. What’s going on?

Analysis: Hospital staff immediately identify asthma
as serious risk. Gave best care! Patient goes home quickly…

Need for Human Interpretable AI! But at what down-side?

Compare: Decision trees vs. Neural Nets

May hurt overall performance!

Carla P. Gomes
CS4700

Perceptron

Perceptron
– Invented by Frank Rosenblatt in 1957 in an

attempt to understand human memory, learning,
and cognitive processes.

– The first neural network model by computation,
with a remarkable learning algorithm:

• If function can be represented by perceptron, the
learning algorithm is guaranteed to quickly
converge to the hidden function!

– Became the foundation of pattern recognition
researchRosenblatt &

Mark I Perceptron:
the first machine that could

"learn" to recognize and
identify optical patterns.

Cornell Aeronautical Laboratory

One of the earliest and most influential neural networks:
An important milestone in AI.

Carla P. Gomes
CS4700

Perceptron

ROSENBLATT, Frank.
(Cornell Aeronautical Laboratory at Cornell
University)

The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain.

In, Psychological Review, Vol. 65, No. 6, pp. 386-
408, November, 1958.

here

Carla P. Gomes
CS4700

Single Layer Feed-forward Neural Networks
Perceptrons

Single-layer neural network (perceptron network)

A network with all the inputs connected directly to the outputs

Since each output unit is
independent of the others,

we can limit our study
to single output perceptrons.

–Output units all operate separately: no shared weights

Carla P. Gomes
CS4700

Perceptron to Learn to Identify Digits
(From Pat. Winston, MIT)

Seven line segments
are enough to produce

all 10 digits

5

31

46

0

2

Digit x0 x1 x2 x3 x4 x5 x6

0 0 1 1 1 1 1 1
9 1 1 1 1 1 1 0
8 1 1 1 1 1 1 1
7 0 0 1 1 1 0 0
6 1 1 1 0 1 1 1
5 1 1 1 0 1 1 0
4 1 1 0 1 1 0 0
3 1 0 1 1 1 1 0
2 1 0 1 1 0 1 1
1 0 0 0 1 1 0 0

Carla P. Gomes
CS4700

Perceptron to Learn to Identify Digits
(From Pat. Winston, MIT)

Seven line segments
are enough to produce

all 10 digits

A vision system reports which of the seven segments
in the display are on, therefore producing the inputs

for the perceptron.5

31

46

0

2

Perceptron to Learn to Identify Digit 0

Seven line segments
are enough to produce

all 10 digits

A vision system reports which of the seven segments
in the display are on, therefore producing the inputs for the perceptron.5

31

46

0

2

0
0
0
0
0

-1

1
0

Digit x0 x1 x2 x3 x4 x5 x6 X7
(fixed
input)

0 0 1 1 1 1 1 1 1

Sum>0 à output=1
Else output=0

When the input digit is 0,
what’s the value of
sum?

37
But Minsky used a simplified model. Single layer.

38

Assume: 0/1 signals. Open circles: “off” or “0”. Closed “on” or “1”.

39

XOR: Try solving
equations for
weights! (with threshold).
Show unsolvable.

40

Update: or perhaps the best! J

41

Handwritten digit recognition

(more specialized)

But, deep neural nets even better!

42

Note: can discover hidden features (“regularities”)
unsupervised with multi-layer networks.

43

Perceptron Learning:
Intuition

Weight Update
à Input Ij (j=1,2,…,n)
à Single output O: target output, T.
Consider some initial weights
Define example error: Err = T – O
Now just move weights in right direction!
If the error is positive, then we need to increase O.

Err >0 à need to increase O;
Err <0 à need to decrease O;

Each input unit j, contributes Wj Ij to total input.
So, use:

Wj ß Wj + a ´ Ij ´ Err
Perceptron Learning Rule (Rosenblatt 1960) a is the learning rate

(for now assume 1).

Carla P. Gomes
CS4700

Let’s consider an example (adapted from Patrick Wintson book, MIT)
Framework and notation:
0/1 signals
Input vector:

Weight vector:

x0 = 1 and q0=-w0, simulate the threshold.

O is output (0 or 1) (single output).

Threshold function:

Perceptron Learning:
Simple Example

>=<
®

nxxxxX ,,, 210 !

>=<
®

nwwwwW ,,, 210 !

010
0

==>=å
=

=

OelseOthenSxwS
nk

k
kk

Learning rate = 1.

Carla P. Gomes
CS4700

Set of examples, each example is a pair
i.e., an input vector and a label y (0 or 1).

Learning procedure, called the “error correcting method”

• Start with all zero weight vector.
• Cycle (repeatedly) through examples and for each example do:

– If perceptron is 0 while it should be 1,
add the input vector to the weight vector

– If perceptron is 1 while it should be 0,
subtract the input vector to the weight vector

– Otherwise do nothing.

Perceptron Learning:
Simple ExampleWj ß Wj + a ´ Ij ´ Err

Err = T – O

),(ii yx
®

Intuitively correct,
(e.g., if output is 0
but it should be 1,
the weights are
increased) !

This procedure provably converges
(polynomial number of steps)
if the function is represented

by a perceptron
(i.e., linearly separable)

Carla P. Gomes
CS4700

Perceptron Learning:
Simple Example

Consider learning the logical OR function.
Our examples are:

Sample x0 x1 x2 label
1 1 0 0 0
2 1 0 1 1
3 1 1 0 1
4 1 1 1 1

010
0

==>=å
=

=

OelseOthenSxwS
nk

k
kk

Activation Function

Carla P. Gomes
CS4700

Perceptron Learning:
Simple Example

We’ll use a single perceptron with three inputs.
We’ll start with all weights 0 W= <0,0,0>

Example 1 I= < 1 0 0> label=0 W= <0,0,0>
Perceptron (1´0+ 0´0+ 0´0 =0, S=0) output à 0

àit classifies it as 0, so correct, do nothing

Example 2 I=<1 0 1> label=1 W= <0,0,0>
Perceptron (1´0+ 0´0+ 1´0 = 0) output à0

àit classifies it as 0, while it should be 1, so we add input to weights
W = <0,0,0> + <1,0,1>= <1,0,1>

I0

I1

I2

O

w0

w1

w2

010
0

==>=å
=

=

OelseOthenSxwS
nk

k
kk

1

If perceptron is 0 while it should be 1,
add the input vector to the weight vector

If perceptron is 1 while it should be 0,
subtract the input vector to the weight vector

Otherwise do nothing.

Error correcting method

Carla P. Gomes
CS4700

Example 3 I=<1 1 0> label=1 W= <1,0,1>
Perceptron (1´0+ 1´0+ 0´0 > 0) output = 1

àit classifies it as 1, correct, do nothing
W = <1,0,1>

Example 4 I=<1 1 1> label=1 W= <1,0,1>
Perceptron (1´0+ 1´0+ 1´0 > 0) output = 1

àit classifies it as 1, correct, do nothing
W = <1,0,1>

I0

I1

I2

O

w0

w1

w2

1

Carla P. Gomes
CS4700

Perceptron Learning:
Simple Example

Epoch 2, through the examples, W = <1,0,1> .

Example 1 I = <1,0,0> label=0 W = <1,0,1>
Perceptron (1´1+ 0´0+ 0´1 >0) output à 1

àit classifies it as 1, while it should be 0, so subtract input from weights
W = <1,0,1> - <1,0,0> = <0, 0, 1>

Example 2 I=<1 0 1> label=1 W= <0,0,1>
Perceptron (1´0+ 0´0+ 1´1 > 0) output à1

àit classifies it as 1, so correct, do nothing

I0

I1

I2

O

w0

w1

w2

If perceptron is 0 while it should be 1,
add the input vector to the weight vector

If perceptron is 1 while it should be 0,
subtract the input vector from the weight vector

Otherwise do nothing.

Error correcting method

1

Carla P. Gomes
CS4700

Example 3 I=<1 1 0> label=1 W= <0,0,1>
Perceptron (1´0+ 1´0+ 0´1 > 0) output = 0

àit classifies it as 0, while it should be 1, so add input to weights
W = <0,0,1> + W = <1,1,0> = <1, 1, 1>

Example 4 I=<1 1 1> label=1 W= <1,1,1>
Perceptron (1´1+ 1´1+ 1´1 > 0) output = 1

àit classifies it as 1, correct, do nothing
W = <1,1,1>

Carla P. Gomes
CS4700

Perceptron Learning:
Simple Example

Epoch 3, through the examples, W = <1,1,1> .

Example 1 I=<1,0,0> label=0 W = <1,1,1>
Perceptron (1´1+ 0´1+ 0´1 >0) output à 1

àit classifies it as 1, while it should be 0, so subtract input from weights
W = <1,1,1> - W = <1,0,0> = <0, 1, 1>

Example 2 I=<1 0 1> label=1 W= <0, 1, 1>
Perceptron (1´0+ 0´1+ 1´1 > 0) output à1

àit classifies it as 1, so correct, do nothing

I0

I1

I2

O

w0

w1

w2

1

Carla P. Gomes
CS4700

Example 3 I=<1 1 0> label=1 W= <0, 1, 1>
Perceptron (1´0+ 1´1+ 0´1 > 0) output = 1

àit classifies it as 1, correct, do nothing

Example 4 I=<1 1 1> label=1 W= <0, 1, 1>
Perceptron (1´0+ 1´1+ 1´1 > 0) output = 1

àit classifies it as 1, correct, do nothing
W = <1,1,1>

Carla P. Gomes
CS4700

Perceptron Learning:
Simple Example

Epoch 4, through the examples, W= <0, 1, 1>.

Example 1 I= <1,0,0> label=0 W = <0,1,1>
Perceptron (1´0+ 0´1+ 0´1 = 0) output à 0

àit classifies it as 0, so correct, do nothing

I0

I1

I2

O

W0 =0

W1=1

W2=1

ORSo the final weight vector W= <0, 1, 1> classifies all
examples correctly, and the perceptron has learned the function!

Aside: in more realistic cases the bias (W0) will not be 0.
(This was just a toy example!)
Also, in general, many more inputs (100 to 1000)

1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 0 1
1 1 1 1 1 0 1 1 0 1 0 1

2 1 0 0 0 1 0 1 1 -1 0 0 1
1 0 1 1 0 0 1 1 0 0 0 1
1 1 0 1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1

3 1 0 0 0 1 1 1 1 -1 0 1 1
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1

1 1 0 1 1 0 1 1 0 1 0 1
1 1 1 1 1 0 1 1 0 1 0 1

2 1 0 0 0 1 0 1 1 -1 0 0 1
1 0 1 1 0 0 1 1 0 0 0 1
1 1 0 1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1

3 1 0 0 0 1 1 1 1 -1 0 1 1
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1

1 1 1 1 1 0 1 1 0 1 0 1
2 1 0 0 0 1 0 1 1 -1 0 0 1

1 0 1 1 0 0 1 1 0 0 0 1
1 1 0 1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1

3 1 0 0 0 1 1 1 1 -1 0 1 1
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 1 0 0 0 1 0 1 1 -1 0 0 1
1 0 1 1 0 0 1 1 0 0 0 1
1 1 0 1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1

3 1 0 0 0 1 1 1 1 -1 0 1 1
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
1 0 1 1 0 0 1 1 0 0 0 1
1 1 0 1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1

3 1 0 0 0 1 1 1 1 -1 0 1 1
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1

1 1 0 1 0 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1

3 1 0 0 0 1 1 1 1 -1 0 1 1
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1
example 3 1 1 0 1 0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1
3 1 0 0 0 1 1 1 1 -1 0 1 1

1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1
example 3 1 1 0 1 0 0 1 0 1 1 1 1
example 4 1 1 1 1 1 1 1 1 0 1 1 1

3 1 0 0 0 1 1 1 1 -1 0 1 1
1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1
example 3 1 1 0 1 0 0 1 0 1 1 1 1
example 4 1 1 1 1 1 1 1 1 0 1 1 1

3 example 1 1 0 0 0 1 1 1 1 -1 0 1 1

1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1
example 3 1 1 0 1 0 0 1 0 1 1 1 1
example 4 1 1 1 1 1 1 1 1 0 1 1 1

3 example 1 1 0 0 0 1 1 1 1 -1 0 1 1

example 2 1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1
example 3 1 1 0 1 0 0 1 0 1 1 1 1
example 4 1 1 1 1 1 1 1 1 0 1 1 1

3 example 1 1 0 0 0 1 1 1 1 -1 0 1 1

example 2 1 0 1 1 0 1 1 1 0 0 1 1
example 3 1 1 0 1 0 1 1 1 0 0 1 1

1 1 1 1 0 1 1 1 0 0 1 1
4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1
example 3 1 1 0 1 0 0 1 0 1 1 1 1
example 4 1 1 1 1 1 1 1 1 0 1 1 1

3 example 1 1 0 0 0 1 1 1 1 -1 0 1 1

example 2 1 0 1 1 0 1 1 1 0 0 1 1
example 3 1 1 0 1 0 1 1 1 0 0 1 1
example 4 1 1 1 1 0 1 1 1 0 0 1 1

4 1 0 0 0 0 1 1 0 0 0 1 1

Epoch x0 x1 x2 Desired
Target

w0 w1 w2 Output Error New
w0

New
w1

New
w2

1 example 1 1 0 0 0 0 0 0 0 0 0 0 0
example 2 1 0 1 1 0 0 0 0 1 1 0 1
example 3 1 1 0 1 1 0 1 1 0 1 0 1
example 4 1 1 1 1 1 0 1 1 0 1 0 1

2 example 1 1 0 0 0 1 0 1 1 -1 0 0 1
example 2 1 0 1 1 0 0 1 1 0 0 0 1
example 3 1 1 0 1 0 0 1 0 1 1 1 1
example 4 1 1 1 1 1 1 1 1 0 1 1 1

3 example 1 1 0 0 0 1 1 1 1 -1 0 1 1

example 2 1 0 1 1 0 1 1 1 0 0 1 1
example 3 1 1 0 1 0 1 1 1 0 0 1 1
example 4 1 1 1 1 0 1 1 1 0 0 1 1

4 example 1 1 0 0 0 0 1 1 0 0 0 1 1

Carla P. Gomes
CS4700

Convergence of Perceptron
Learning Algorithm

… training data linearly separable
… step size a sufficiently small
… no “hidden” units

Perceptron converges to a consistent function, if…

Carla P. Gomes
CS4700

Perceptron learns majority function easily,
DTL is hopeless

Carla P. Gomes
CS4700

DTL learns restaurant function easily,
perceptron cannot represent it

Carla P. Gomes
CS4700

Good news: Adding hidden layer allows more target
functions to be represented.

Minsky & Papert (1969)

Carla P. Gomes
CS4700

Multi-layer Perceptrons (MLPs)

Single-layer perceptrons can only represent linear decision surfaces.

Multi-layer perceptrons can represent non-linear decision surfaces.

Hidden
Layer

Carla P. Gomes
CS4700

Output units

The choice of how to represent the output then determines the form of the
cross-entropy function

1. Linear output z = WT h + b. Often used as mean of Gaussian
distribution.

2. Sigmoid function for Bernoulli distribution. Output P(y=1 | x)

Carla P. Gomes
CS4700

Output units

3. Softmax for Multinoulli output distributions. Predict a vector, each
element being P(y = i| x)

A linear layer

Softmax function

Carla P. Gomes
CS4700

Hidden Layer Output Layer

Carla P. Gomes
CS4700

Minsky & Papert (1969) “[The perceptron] has many features to attract attention: its
linearity; its intriguing learning theorem; its clear paradigmatic simplicity as a
kind of parallel computation. There is no reason to suppose that any of these
virtues carry over to the many-layered version. Nevertheless, we consider it to
be an important research problem to elucidate (or reject) our intuitive judgment
that the extension is sterile.”

Bad news: No algorithm for learning in multi-layered
networks, and no convergence theorem was known in
1969!

Minsky & Papert (1969) pricked the neural network balloon …they almost killed the
field.

Winter of Neural Networks 69-86.

Rumors say these results may have killed Rosenblatt….

Carla P. Gomes
CS4700

Two major problems they saw were
1. How can the learning algorithm apportion credit (or blame) to

individual weights for incorrect classifications depending on a
(sometimes) large number of weights?

2. How can such a network learn useful higher-order features?

Carla P. Gomes
CS4700

Good news: Successful credit-apportionment learning algorithms
developed soon afterwards (e.g., back-propagation). Still successful, in
spite of lack of convergence theorem.

Back Propagation - Next

